16 research outputs found

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Data from: Distance-decay differs among vertical strata in a tropical rainforest

    No full text
    1. Assemblage similarity decays with geographic distance—a pattern known as the distance-decay relationship. While this pattern has been investigated for a wide range of organisms, ecosystems, and geographical gradients, whether these changes vary more cryptically across different forest strata (from ground to canopy) remains elusive. 2. Here, we investigated the influence of ground vs arboreal assemblages to the general distance-decay relationship observed in forests. We seek to explain differences in distance-decay relationships between strata in the context of the vertical stratification of assemblage composition, richness, and abundance. 3. We surveyed for a climate sensitive model organism, amphibians, across vertical rainforest strata in Madagascar. For each tree, we defined assemblages of ground-dwelling, understory, or canopy species. We calculated horizontal distance-decay in similarity across all trees, and across assemblages of species found in different forest strata (ground, understory, and canopy). 4. We demonstrate that within stratum comparisons exhibit a classic distance-decay relationship for canopy and understory communities but no distance-decay relationships for ground communities. We suggest that differences in horizontal turnover between strata may be due to local scale habitat and resource heterogeneity in the canopy, or the influence of arboreal traits on species dispersal and distribution. 5. Synthesis: Biodiversity patterns in horizontal space were not consistent across vertical space, suggesting that canopy fauna may not play by the same set of ‘rules’ as their conspecifics living below them on the ground. Our study provides compelling evidence that the above-ground amphibian assemblage of tropical rainforests is the primary driver of the classical distance-decay relationship

    Phylogeny and Morphology Determine Vulnerability to Global Warming in <i>Pristimantis</i> Frogs

    No full text
    Global warming is a great threat to biodiversity with negative impacts spanning the entire biological hierarchy. One of the main species’ traits determining survival at higher temperature is the thermal point at which an animal loses its ability to escape from deadly conditions (critical thermal maximum—CTmax). Variation in CTmax across species is the outcome of environmental and evolutionary factors, but studies do not typically measure the degree to which environment or phylogeny influences the variation in trait values. Here, we aim to elucidate whether local environmental variables or phylogeny influence CTmax in highly climate change-threatened amphibians in the Tropical Andes. We measured CTmax from 204 individuals belonging to seven Pristimantis frog species encountered in primary and secondary forests, and cattle pastures. We recorded their habitat, elevation, and the range of environmental temperatures they experienced over one year. Using phylogenetic analyses, we demonstrate that physiological thermal tolerance is related to phylogeny, positively related to body length, but not affected by environmental factors. We suggest that both phylogeny and morphology determine vulnerability to global warming

    Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change

    No full text
    Global warming is having impacts across the Tree of Life. Understanding species’ physiological sensitivity to temperature change and how they relate to local temperature variation in their habitats is crucial to determining vulnerability to global warming. We ask how species’ vulnerability varies across habitats and elevations, and how climatically buffered microhabitats can contribute to reduce their vulnerability. We measured thermal sensitivity (critical thermal maximum—CT) of 14 species of Pristimantis frogs inhabiting young and old secondary, and primary forests in the Colombian Andes. Exposure to temperature stress was measured by recording temperature in the understorey and across five microhabitats. We determined frogs’ current vulnerability across habitats, elevations and microhabitats accounting for phylogeny and then ask how vulnerability varies under four warming scenarios: +1.5, +2, +3 and +5°C. We found that CT was constant across species regardless of habitat and elevation. However, species in young secondary forests are expected to become more vulnerable because of increased exposure to higher temperatures. Microhabitat variation could enable species to persist within their thermal temperature range as long as regional temperatures do not surpass +2°C. The effectiveness of microhabitat buffering decreases with a 2–3°C increase, and is almost null under a 5°C temperature increase. Microhabitats will provide thermal protection to Andean frog communities from climate change by enabling tracking of suitable climates through short distance movement. Conservation strategies, such as managing landscapes by preserving primary forests and allowing regrowth and reconnection of secondary forest would offer thermally buffered microhabitats and aid in the survival of this group.T.H. and D.P.E. received funding by the Research Council of Norway, grant number 208836; P.G. was supported by CONACyT, Scholarship 359063

    Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change

    No full text
    Global warming is having impacts across the Tree of Life. Understanding species’ physiological sensitivity to temperature change and how they relate to local temperature variation in their habitats is crucial to determining vulnerability to global warming. We ask how species’ vulnerability varies across habitats and elevations, and how climatically buffered microhabitats can contribute to reduce their vulnerability. We measured thermal sensitivity (critical thermal maximum—CT) of 14 species of Pristimantis frogs inhabiting young and old secondary, and primary forests in the Colombian Andes. Exposure to temperature stress was measured by recording temperature in the understorey and across five microhabitats. We determined frogs’ current vulnerability across habitats, elevations and microhabitats accounting for phylogeny and then ask how vulnerability varies under four warming scenarios: +1.5, +2, +3 and +5°C. We found that CT was constant across species regardless of habitat and elevation. However, species in young secondary forests are expected to become more vulnerable because of increased exposure to higher temperatures. Microhabitat variation could enable species to persist within their thermal temperature range as long as regional temperatures do not surpass +2°C. The effectiveness of microhabitat buffering decreases with a 2–3°C increase, and is almost null under a 5°C temperature increase. Microhabitats will provide thermal protection to Andean frog communities from climate change by enabling tracking of suitable climates through short distance movement. Conservation strategies, such as managing landscapes by preserving primary forests and allowing regrowth and reconnection of secondary forest would offer thermally buffered microhabitats and aid in the survival of this group.T.H. and D.P.E. received funding by the Research Council of Norway, grant number 208836; P.G. was supported by CONACyT, Scholarship 359063

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore